\(\int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx\) [114]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 138 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {A x}{a^4}-\frac {(55 A-6 B) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}-\frac {2 (80 A-3 B) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))}-\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3} \]

[Out]

A*x/a^4-1/105*(55*A-6*B)*tan(d*x+c)/a^4/d/(1+sec(d*x+c))^2-2/105*(80*A-3*B)*tan(d*x+c)/a^4/d/(1+sec(d*x+c))-1/
7*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^4-1/35*(10*A-3*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4007, 4004, 3879} \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {2 (80 A-3 B) \tan (c+d x)}{105 a^4 d (\sec (c+d x)+1)}-\frac {(55 A-6 B) \tan (c+d x)}{105 a^4 d (\sec (c+d x)+1)^2}+\frac {A x}{a^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3}-\frac {(A-B) \tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

[In]

Int[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^4,x]

[Out]

(A*x)/a^4 - ((55*A - 6*B)*Tan[c + d*x])/(105*a^4*d*(1 + Sec[c + d*x])^2) - (2*(80*A - 3*B)*Tan[c + d*x])/(105*
a^4*d*(1 + Sec[c + d*x])) - ((A - B)*Tan[c + d*x])/(7*d*(a + a*Sec[c + d*x])^4) - ((10*A - 3*B)*Tan[c + d*x])/
(35*a*d*(a + a*Sec[c + d*x])^3)

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 4007

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-(b
*c - a*d))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[
e + f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {\int \frac {-7 a A+3 a (A-B) \sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{7 a^2} \\ & = -\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac {\int \frac {35 a^2 A-2 a^2 (10 A-3 B) \sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{35 a^4} \\ & = -\frac {(55 A-6 B) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}-\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {\int \frac {-105 a^3 A+a^3 (55 A-6 B) \sec (c+d x)}{a+a \sec (c+d x)} \, dx}{105 a^6} \\ & = \frac {A x}{a^4}-\frac {(55 A-6 B) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}-\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {(2 (80 A-3 B)) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{105 a^3} \\ & = \frac {A x}{a^4}-\frac {(55 A-6 B) \tan (c+d x)}{105 a^4 d (1+\sec (c+d x))^2}-\frac {(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {(10 A-3 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}-\frac {2 (80 A-3 B) \tan (c+d x)}{105 d \left (a^4+a^4 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(329\) vs. \(2(138)=276\).

Time = 4.28 (sec) , antiderivative size = 329, normalized size of antiderivative = 2.38 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (3675 A d x \cos \left (\frac {d x}{2}\right )+3675 A d x \cos \left (c+\frac {d x}{2}\right )+2205 A d x \cos \left (c+\frac {3 d x}{2}\right )+2205 A d x \cos \left (2 c+\frac {3 d x}{2}\right )+735 A d x \cos \left (2 c+\frac {5 d x}{2}\right )+735 A d x \cos \left (3 c+\frac {5 d x}{2}\right )+105 A d x \cos \left (3 c+\frac {7 d x}{2}\right )+105 A d x \cos \left (4 c+\frac {7 d x}{2}\right )-9940 A \sin \left (\frac {d x}{2}\right )+1260 B \sin \left (\frac {d x}{2}\right )+8260 A \sin \left (c+\frac {d x}{2}\right )-1260 B \sin \left (c+\frac {d x}{2}\right )-7140 A \sin \left (c+\frac {3 d x}{2}\right )+882 B \sin \left (c+\frac {3 d x}{2}\right )+3780 A \sin \left (2 c+\frac {3 d x}{2}\right )-630 B \sin \left (2 c+\frac {3 d x}{2}\right )-2800 A \sin \left (2 c+\frac {5 d x}{2}\right )+294 B \sin \left (2 c+\frac {5 d x}{2}\right )+840 A \sin \left (3 c+\frac {5 d x}{2}\right )-210 B \sin \left (3 c+\frac {5 d x}{2}\right )-520 A \sin \left (3 c+\frac {7 d x}{2}\right )+72 B \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{13440 a^4 d} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^4,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^7*(3675*A*d*x*Cos[(d*x)/2] + 3675*A*d*x*Cos[c + (d*x)/2] + 2205*A*d*x*Cos[c + (3*d*
x)/2] + 2205*A*d*x*Cos[2*c + (3*d*x)/2] + 735*A*d*x*Cos[2*c + (5*d*x)/2] + 735*A*d*x*Cos[3*c + (5*d*x)/2] + 10
5*A*d*x*Cos[3*c + (7*d*x)/2] + 105*A*d*x*Cos[4*c + (7*d*x)/2] - 9940*A*Sin[(d*x)/2] + 1260*B*Sin[(d*x)/2] + 82
60*A*Sin[c + (d*x)/2] - 1260*B*Sin[c + (d*x)/2] - 7140*A*Sin[c + (3*d*x)/2] + 882*B*Sin[c + (3*d*x)/2] + 3780*
A*Sin[2*c + (3*d*x)/2] - 630*B*Sin[2*c + (3*d*x)/2] - 2800*A*Sin[2*c + (5*d*x)/2] + 294*B*Sin[2*c + (5*d*x)/2]
 + 840*A*Sin[3*c + (5*d*x)/2] - 210*B*Sin[3*c + (5*d*x)/2] - 520*A*Sin[3*c + (7*d*x)/2] + 72*B*Sin[3*c + (7*d*
x)/2]))/(13440*a^4*d)

Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.64

method result size
parallelrisch \(\frac {\left (15 A -15 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+\left (-105 A +63 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+\left (385 A -105 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+\left (-1575 A +105 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+840 A x d}{840 a^{4} d}\) \(89\)
norman \(\frac {\frac {A x}{a}+\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{56 a d}-\frac {\left (5 A -3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{40 a d}+\frac {\left (11 A -3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{24 a d}-\frac {\left (15 A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}}{a^{3}}\) \(112\)
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} A}{7}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} B}{7}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A +\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}+\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B -15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +16 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(130\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} A}{7}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} B}{7}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A +\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}+\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B -15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +16 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}\) \(130\)
risch \(\frac {A x}{a^{4}}-\frac {2 i \left (420 A \,{\mathrm e}^{6 i \left (d x +c \right )}-105 B \,{\mathrm e}^{6 i \left (d x +c \right )}+1890 A \,{\mathrm e}^{5 i \left (d x +c \right )}-315 B \,{\mathrm e}^{5 i \left (d x +c \right )}+4130 A \,{\mathrm e}^{4 i \left (d x +c \right )}-630 B \,{\mathrm e}^{4 i \left (d x +c \right )}+4970 A \,{\mathrm e}^{3 i \left (d x +c \right )}-630 B \,{\mathrm e}^{3 i \left (d x +c \right )}+3570 A \,{\mathrm e}^{2 i \left (d x +c \right )}-441 B \,{\mathrm e}^{2 i \left (d x +c \right )}+1400 \,{\mathrm e}^{i \left (d x +c \right )} A -147 B \,{\mathrm e}^{i \left (d x +c \right )}+260 A -36 B \right )}{105 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}\) \(181\)

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

1/840*((15*A-15*B)*tan(1/2*d*x+1/2*c)^7+(-105*A+63*B)*tan(1/2*d*x+1/2*c)^5+(385*A-105*B)*tan(1/2*d*x+1/2*c)^3+
(-1575*A+105*B)*tan(1/2*d*x+1/2*c)+840*A*x*d)/a^4/d

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.31 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {105 \, A d x \cos \left (d x + c\right )^{4} + 420 \, A d x \cos \left (d x + c\right )^{3} + 630 \, A d x \cos \left (d x + c\right )^{2} + 420 \, A d x \cos \left (d x + c\right ) + 105 \, A d x - {\left (4 \, {\left (65 \, A - 9 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (620 \, A - 39 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (535 \, A - 24 \, B\right )} \cos \left (d x + c\right ) + 160 \, A - 6 \, B\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/105*(105*A*d*x*cos(d*x + c)^4 + 420*A*d*x*cos(d*x + c)^3 + 630*A*d*x*cos(d*x + c)^2 + 420*A*d*x*cos(d*x + c)
 + 105*A*d*x - (4*(65*A - 9*B)*cos(d*x + c)^3 + (620*A - 39*B)*cos(d*x + c)^2 + (535*A - 24*B)*cos(d*x + c) +
160*A - 6*B)*sin(d*x + c))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*c
os(d*x + c) + a^4*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\int \frac {A}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**4,x)

[Out]

(Integral(A/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x) + Integral(B*se
c(c + d*x)/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x))/a**4

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.46 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {5 \, A {\left (\frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {336 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}\right )} - \frac {3 \, B {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/840*(5*A*((315*sin(d*x + c)/(cos(d*x + c) + 1) - 77*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5
/(cos(d*x + c) + 1)^5 - 3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 336*arctan(sin(d*x + c)/(cos(d*x + c) + 1
))/a^4) - 3*B*(35*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5
/(cos(d*x + c) + 1)^5 - 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.12 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\frac {840 \, {\left (d x + c\right )} A}{a^{4}} + \frac {15 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 105 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 63 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 385 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1575 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{840 \, d} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

1/840*(840*(d*x + c)*A/a^4 + (15*A*a^24*tan(1/2*d*x + 1/2*c)^7 - 15*B*a^24*tan(1/2*d*x + 1/2*c)^7 - 105*A*a^24
*tan(1/2*d*x + 1/2*c)^5 + 63*B*a^24*tan(1/2*d*x + 1/2*c)^5 + 385*A*a^24*tan(1/2*d*x + 1/2*c)^3 - 105*B*a^24*ta
n(1/2*d*x + 1/2*c)^3 - 1575*A*a^24*tan(1/2*d*x + 1/2*c) + 105*B*a^24*tan(1/2*d*x + 1/2*c))/a^28)/d

Mupad [B] (verification not implemented)

Time = 14.02 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.18 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {A\,x}{a^4}-\frac {\left (\frac {52\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}-\frac {12\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {23\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{70}-\frac {16\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (\frac {5\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{28}-\frac {9\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{70}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}+\frac {B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}}{a^4\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \]

[In]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^4,x)

[Out]

(A*x)/a^4 - ((B*sin(c/2 + (d*x)/2))/56 - (A*sin(c/2 + (d*x)/2))/56 + cos(c/2 + (d*x)/2)^2*((5*A*sin(c/2 + (d*x
)/2))/28 - (9*B*sin(c/2 + (d*x)/2))/70) + cos(c/2 + (d*x)/2)^6*((52*A*sin(c/2 + (d*x)/2))/21 - (12*B*sin(c/2 +
 (d*x)/2))/35) - cos(c/2 + (d*x)/2)^4*((16*A*sin(c/2 + (d*x)/2))/21 - (23*B*sin(c/2 + (d*x)/2))/70))/(a^4*d*co
s(c/2 + (d*x)/2)^7)